
Journal of Geometry and Physics 44 (2002) 156–170

Geometric structure of “broadly integrable”
Hamiltonian systems

Francesco Fassò∗, Andrea Giacobbe
Dipartimento di Matematica Pura e Applicata, Università di Padova, Via G. Belzoni 7, 35131 Padova, Italy

Received 7 January 2002

Abstract

We study the geometry of the fibration in invariant tori of a Hamiltonian system which is inte-
grable in Bogoyavlenskij’s “broad sense”—a generalization of the standard cases of Liouville and
non-commutative integrability. We show that the structure of such a fibration generalizes that of
the standard cases. Firstly, the base manifold has a Poisson structure. Secondly, there is a natural
way of arranging the invariant tori which generates a second foliation of the phase space; however,
such a foliation is not just the polar to the invariant tori. Finally, under suitable conditions, there is a
notion of an “action manifold” with an affine structure. We also study the analogous of the problem
of the existence of “global action-angle coordinates” for these systems.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Integrability of Hamiltonian systems is usually identified with “Liouville” or “complete”
integrability: the system has the maximal number of independent integrals of motion in
involution (d, if the phase space has dimension 2d) and their level sets are Lagrangian
submanifolds which, if compact, are tori. The local structure of this Lagrangian fibration is
described by the Liouville–Arnold theorem on action-angle coordinates.

Nevertheless, complete integrability does not exhaust the variety of possible situations.
The most important reason is that many systems have more integrals of motion than degrees
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of freedom, say 2d−n integrals of motion for some 0< n < d, and quasi-periodic motions
on tori of dimensionn < d. In many cases, including such important classical systems like
the Kepler system and the Euler–Poinsot rigid body, systems of this type are integrable in
the “non-commutative” sense of Fomenko and Mischenko[18] (see also[17]).

Geometrically, non-commutative integrability is characterized by the fact that the invari-
ant tori are isotropic and that, moreover, the fibration by the invariant tori is “symplectically
complete”. The latter property can be characterized in two equivalent ways: (i) the fibration
possesses a “polar” foliation, that is a foliation whose leaves are symplectically orthogonal
to the invariant tori, or, (ii) the fibration is a Poisson morphism onto a Poisson manifold
P . These two characterizations are linked by the fact that the (coisotropic) polar foliation
is the lift to the manifold of the symplectic foliation ofP . This doubly foliated structure,
which in symplectic geometry is called with various names, among which “dual pair”[23]
and “bifoliation” [16], plays an important role for the comprehension of superintegrable
systems (see, e.g.[10] and, for applications,[9,12]).

On the other hand, there are also Hamiltonian systems which have fewer thand integrals of
motion but nevertheless have quasi-periodic motions on tori which have dimension greater
thand and are coisotropic. Systems of this type have been extensively studied by Parasyuk
(see, e.g.[20–22]).

However, the picture is not yet complete because there exist Hamiltonian systems whose
motions are quasi-periodic on tori which are neither Lagrangian nor isotropic nor coisotropic
[3,4,11]. Even though there is no known example of a system of this kind arising from a
mechanical problem, and moreover systems of this kind are rather special (they exist, for
instance, only in non-exact symplectic manifolds, see[5,11] for details), their very exis-
tence raises some fundamental questions about the concept itself of integrable Hamiltonian
system. One further reason of interest is that systems of this kind are related to non-Poisson
symplectic torus actions on symplectic manifolds, a subject the study of which has been
initiated only very recently (see[2,14,15]).

An important advancement in the comprehension of the situation is due to Bogoyavlenskij
[3–5], who formulated a criterion for integrability of Hamiltonian systems (as well as not
Hamiltonian systems) which is general enough to account for all the known cases—and to
unify them. In short, Bogoyavlenskij calls a Hamiltonian system withd degrees of freedom
“integrable in the broad sense” if it possesses

• 2d − n first integrals with compact level sets, and
• n independent symmetries which commute and preserve the first integrals.

The common level sets of these integrals of motion, if compact, are obviouslyn-dimen-
sional tori which carry linear motions. Under a natural (but crucial) additional non-resonance
hypothesis, calledTn-density, Bogoyavlenskij characterized the local structure of the fi-
bration by these tori in terms of the existence of local coordinates which generalize the
action-angle coordinates.

The aim of this paper is to go one step further by investigating the global structure of the
fibration by the invariant tori of aTn-dense broadly integrable Hamiltonian system. Our idea
is to try to understand if these systems are fundamentally different from the standard ones
by looking at the global properties of the fibration by their invariant tori. As we will see,
even though there are some differences, the global geometry of the fibration by the invariant
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tori generalizes in a natural way the “dual pair” structure of non-commutative integrability.
In fact, there is still a naturally defined doubly foliated structure, the second foliation being
now the direct sum of the polar foliation and of the fibration itself. Furthermore, as in the
standard case, the base of the fibration by the invariant tori has a Poisson structure and the
second foliation is the lift of the symplectic foliation of this Poisson manifold. Finally, if the
second foliation is a fibration, then as in the standard case its base has an affine structure.

In addition, we will also investigate the analog of the problem of the existence of “global
action-angle coordinates” for a broadly integrable system. This problem has been studied
by Duistermaat[7] for the completely integrable case, by Dazord and Delzant[8] for the
non-commutatively integrable case, and by Parasyuk[21] for the coisotropic case. As we
shall point out, the main novelty with respect to the completely and non-commutatively
integrable cases is that the monodromy of the fibration and the holonomy of the action
manifold do not coincide, even though they are still related.

2. Bogoyavlenskij’s broad integrability

Broad integrability. Bogoyavlenskij’s definition of broad integrability applies to any
vector field, not necessarily Hamiltonian:

Definition 1. A vector fieldX on a manifoldM of dimensionN is “integrable in the broad
sense” if there exist

(i) A fibrationπ : M → P with fibers of dimensionn < N which are compact, connected
and invariant under the flow ofX. (P is a manifold of dimensionN − n.)

(ii) For any pointp ∈ P , a free infinitesimal action ofTn onπ−1(U), whereU ⊂ P is a
neighborhood ofp, which leaves invariant the vector fieldX and the fibers ofπ .

In fact, Bogoyavlenskij expresses condition (i) by requiring the existence ofN − n first
integrals ofX which are almost everywhere independent. The level sets of these integrals
give rise to a foliation ofM. Since we are only interested to the regular leaves of such a
foliation and since a submersion with compact fibers is a fibration, we consider a fibration
instead. This slightly more general hypothesis allows us to avoid any reference to a particular
set of first integrals and to focus on the geometric object itself. Condition (ii) is equivalent
to the existence of sets ofn “semilocal” vector fieldsY1, . . . , Yn which pairwise commute
(i.e. [Yi, Yj ] = 0), are infinitesimal symmetries ofX (i.e. [X, Yi ] = 0) and are tangent to
the fibers ofπ (i.e.LYi f = 0 for any first integralf of π ; a first integral of a fibration is
any function constant on its fibers). It is a standard matter to prove that

Proposition 1. If X is integrable in the broad sense then

(i) The fibers ofπ are diffeomorphic toTn.
(ii) Every fiber ofπ has a neighborhoodU ⊂ M and a diffeomorphismC = (b, α) : U →

W × T
n, whereW ⊂ R

N−n, such that

C∗X|U(b, α) = w(b)
∂

∂α
(2.1)

with w a map from W toRn.
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Proof. (i) The fibers ofπ are tori because they possessn pairwise commuting and linearly
independent tangent vector fields. (ii) Any set ofn independent local first integrals ofπ can
be taken asb-coordinates; the anglesα are in fact constructed within the proof of (i). �

In the sequel, we shall often call “invariant tori” the fibers ofπ . Our analysis will be
restricted to a special (but quite natural) class of broadly integrable systems. The reason
for such a restriction is that all the integrals of motion of a system should be taken into
consideration when defining the fibrationπ—it should not be possible to subdivide all the
invariant tori into invariant tori of a smaller dimension. This happens if there are sufficiently
many non-resonant tori:

Definition 2. A broadly integrable system is said to be “T
n-dense” if a dense set of its

invariant tori are closure of orbits.1

Remark. Following for instance[13], one might call a system “integrable” if it is possible
to choose, at least locally, coordinates(b, α) ∈ R

2d−n × T
n such that the vector field has

the form(2.1). Any integrable system is broadly integrable:b1, . . . , b2d−n are integrals of
motion and∂/∂α1, . . . , ∂/∂αn are commuting symmetries which preserve theb’s. Thus,
the notion of broad integrability includes essentially all systems with quasi-periodic dy-
namics and is therefore very general. Whether broad integrability is an effective criterion
for integrability depends to a large extent on the possibility of finding natural mechanisms
to produce, in concrete cases, the torus fibration (namely, the integrals of motions) and the
symmetries.

The Hamiltonian case. We now specialize to the (locally) Hamiltonian case. We assume
thatM has dimensionN = 2d and carries a symplectic formω, and that the vector field
X is locally Hamiltonian, namely, the 1-formiXω is closed. A “local Hamiltonian” ofX is
any functionH , possibly defined in a subset ofM, such thatiXω = −dH . The vector field
is said to be Hamiltonian ifiXω is exact. For the present analysis it is natural to consider
the locally Hamiltonian case.

The basic result of Bogoyavlenskij’s analysis, which is central to the present investigation,
is the following Proposition, special cases of which were also given in[11,21]. In order
to simplify the notation, we understand sums over repeated indices and we tacitly use the
following conventions about indexes:i, j = 1, . . . , n; l, m = 1, . . . , k; u, v = 1, . . . , (2d−
n − k)/2, with k defined below.

Proposition 2 (Bogoyavlenskij).Let X be a locally Hamiltonian, broadly integrable and
T
n-dense vector field on a symplectic manifold(M,ω). Letπ : M → P be the fibration by

its invariant tori. Then:

(i) The restriction ofω to the fibers ofπ has constant rankr = n − k, 0 ≤ k ≤ n.
(ii) Every invariant torus has a neighborhood U equipped with coordinates(a, p, q, α)

with values inRk × R
(2d−n−k)/2 × R

(2d−n−k)/2 × T
n such that

ω|U = Ξjl dal ∧ dαj + dpu ∧ dqu + 1
2Cij dαj ∧ dαi (2.2)

1 Such a system is also said “to haven-frequencies”[11,17].
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for a constant antisymmetricn× n matrix C of rank r and a constantn× k matrixΞ
of rank k the rows of which form an orthonormal basis for ker C, that is

ΞTΞ = Ik, Im Ξ = kerC, (2.3)

whereIk is thek × k identity matrix. (If k = 0 then C has full rank, there are no
a-coordinates andΞ = 0. If k + n = 2d then there are no(p, q)-coordinates.)

(iii) Given a system of such coordinates, there exist a functionh(a),unique up to an additive
constant, and a unique vectorη ∈ Im C such that

X|U =
[
Ξ

∂h

∂a
(a) + η

]
i

∂

∂αi
. (2.4)

Moreover, every local Hamiltonian of X has the formh(a) + Cα · η + const.

In the sequel we call “admissible coordinates of action-angle type” or simply “admissible
coordinates” any set of semilocal coordinates(a, p, q, α) as inProposition 2. The coordi-
natesa will be called “actions” and the coordinatesα will be called “angles”. The meaning
of the remaining coordinatesp, q will become clear later. Note that the rank ofC, namely
r = n − k, is always even.

It may be useful to illustrate the notion of broad integrability giving some examples
and remarks. First of all, note that the invariant tori (i.e. the fibers ofπ ) are isotropic or
Lagrangian if and only ifC = 0, or equivalentlyk = n. In fact, the standard cases of
integrability, namely complete and non-commutative integrability, are recovered whenk =
n = d and, respectively,k = n < d. (In the latter case, the existence of the polar foliation
follows from the existence ofn first integrals ofπ which pairwise Poisson commute, namely,
the actions; see[11] for some comments.)

Therefore, in this paper we focus on the casek < n. In such a case there are fewer actions
than angles, the matrixC is non-zero and hence the symplectic formω is not exact. Systems
of this kind may have bothn ≤ d andn ≥ d. Whenn < d the invariant tori are not isotropic
(Lagrangian, ifn = d); for instance, the locally Hamiltonian system defined by

M = R
2 × T

2 � (p, q, α1, α2), ω = dp ∧ dq + dα1 ∧ dα2,

X = ∂

∂α1
+

√
2

∂

∂α2
(2.5)

is aT
2-dense broadly integrable system with no actions (k = 0 because in this caseC is

non-singular). Whenn ≥ d the tori may or may not be coisotropic. As it will be clear later,
the coisotropic case is met whenk = 2d − n.

Remark.

(i) The vector fields∂/∂αi aren independent locally Hamiltonian commuting symmetries.
If k < n, however, not all of them are Hamiltonian (not even in a neighborhood of
an invariant torus). In fact, in the coordinate neighborhoodU , there exist at mostk
independent commuting symmetries which are Hamiltonian. To see this, denote by
ξ1, . . . , ξn the rows of the matrixΞ , which form an orthonormal basis of kerC, and
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consider any basisη1, . . . , ηn−k of (kerC)⊥. Then, thek symmetriesξ l · ∂/∂α are
Hamiltonian (inU ) but then− k symmetriesηj · ∂/∂α are only locally Hamiltonian:
one has in fact

ω

(
ξ l · ∂

∂α
, ·

)
= −dal, ω

(
ηj · ∂

∂α
, ·

)
= Cηj · dα.

Moreover, whenk < n the semilocalTn-action generating the invariant tori is never
Poisson (an action is Poisson ifω vanishes on any two fundamental vector fields, see,
e.g.[19]).

(ii) The flows of the Hamiltonian vector fieldsXa1, . . . , Xak of the actions generate a toral
subbundle of the fibrationπ if and only if kerC is a rational subspace ofR

n (otherwise
some of these flows are dense in a torus of dimension greater thank).

(iii) In the isotropic casek = n one can always choose the coordinatesa so thatΞ = In.
(In factΞ is invertible and one can make the change of coordinatesa �→ Ξa.)

3. Global structure

The transition functions. We now study the (global) geometry of the fibration by the
invariant tori of a broadly integrable Hamiltonian system. To this end, we begin by deter-
mining the transition functions between different sets of semilocal coordinates(a, p, q, α)

of Proposition 2.

Proposition 3. Assume(a, p, q, α) and(a′, p′, q ′, α′) are two systems of semilocal coor-
dinates as inProposition 2. Denote bySL±(n,Z) the subgroup ofGL(n,Z) of unimodular
matrices and byΞ andΞ ′ the matrices entering the expression(2.2)of ω in the two coor-
dinate systems. Then, in the intersection of their domains(if not empty) one has

α′ = Zα + F(a, p, q), (3.1)

a′ = Z̃a + z, (3.2)

p′ = P(a, p, q), q ′ = Q(a, p, q), (3.3)

whereZ ∈ SL±(n,Z) is a constant matrix, z ∈ R
k is a constant vector, F, P andQ are

maps, and

Z̃ = Ξ ′TZ−TΞ ∈ GL(k,R). (3.4)

Proof. Let us writeb = (a, p, q) andb′ = (a′, p′, q ′). Thus obviouslyb′ = b′(b). We
begin by showing that transformation rule(3.1)for the angles follows from the assumption
of T

n-density alone. In fact, letα′ = α′(b, α) be such a transformation. Then, along a
motion of the system one has2

α′(b, α0 + w(b)t) = α′(b, α0) + w′(b′(b))t.

2 It is understood that all equalities among angles are mod 2π .
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For a dense subset of values ofb, the curveα0 + w(b)t is dense on the torus; hence, by
continuity, for anyb one has

α′(b, α0 + α1) = α′(b, α0) + α′(b, α1) ∀α0, α1 ∈ T
n

so thatα �→ α′(b, α) is linear on each torus:α′(b, α) = Z(b)α + F(b). Here the matrix
Z(b) must belong to SL±(n,Z) and hence is constant.

We now prove the transformation rule(3.2)for the actions (ifk �= 0). To this end, we use
the simplecticity of the two sets of coordinates, namely

Ξ ′ da′ ∧ dα′ + dp′ ∧ dq ′ + 1
2C

′ dα′ ∧ dα′

= Ξ da ∧ dα + dp ∧ dq + 1
2C dα ∧ dα. (3.5)

Usingα′ = Zα +F(b) one sees that the coefficients of da ∧ dα in the above equation give

ZT
(
Ξ ′ ∂a′

∂a
+ C′ ∂F

∂a

)
= Ξ. (3.6)

SinceΞTΞ = Ik andΞ ′TC′ = −(C′Ξ ′)T = 0, see(2.3), one obtains∂a′/∂a = Z̃ after left
multiplication byΞ ′TZ−T. In order to conclude the proof it suffices to show that∂a′/∂p =
∂a′/∂q = 0. The coefficients of the terms dp∧dα in (3.5)giveZT(Ξ ′∂a′/∂p+C′∂F/∂p) =
0, that is

Ξ ′ ∂a′

∂p
= −C′ ∂F

∂p
. (3.7)

Since ImΞ ′ and ImC′ = (kerC)⊥ are orthogonal, the left- and right-hand sides of the
latter equations must both vanish. SinceΞ ′ has maximal rank, this implies∂a′/∂p = 0, as
claimed. The proof that∂a′/∂q = 0 is analogous. �

Remark.

(i) The matricesC andC′ satisfy

C = ZTC′Z. (3.8)

Eqs. (3.6) and (3.7)imply

C′ ∂F
∂a

= Z−TΞ − Ξ ′Z̃, C′ ∂F
∂p

= 0, C′ ∂F
∂q

= 0. (3.9)

(ii) It is not difficult to verify that the functionsh andh′ and the vectorsη andη′ entering
the local expressions(2.4)of the vector fieldX in the two coordinate systems satisfy

h(a) = h′(Z̃a + z̃) + β · Ξa, η′ = Zη − Zβ

for someβ ∈ kerC. If X is Hamiltonian, thenβ = 0.

The generalized dual pair. We now use the information ofProposition 3to infer the global
geometry of the fibrationπ : M → P . We assume thatM has dimension 2d, thatP has
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dimension 2d−n, and that there arek actions. With a minor abuse of notation, the semilocal
coordinatesb = (a, p, q) can be regarded as local coordinates on the base manifoldP .

Proposition 4.

(i) π : M → P is symplectically complete, that is, possesses a polar foliationπω.
(ii) P has a Poisson structure of constant rank2d−n−k such thatπ is a Poisson morphism.

In local coordinates(a, p, q), the Poisson brackets on P are

{f, g}P = ∂f

∂pu

∂g

∂qu
− ∂f

∂qu

∂g

∂pu

,

anda1, . . . , ak are local Casimirs.

Proof.

(i) We need to show that the distribution which is orthogonally symplectic toπ is Frobenius
integrable. A vector fieldY is symplectically orthogonal to the fibers ofπ if and only
if ω(Y, ∂/∂αi) = 0 for all i = 1, . . . , n. If we write Y = Yal (∂/∂al) + Ypu(∂/∂pu) +
Yqu(∂/∂qu) + Yαi (∂/∂αi) and use the expression(2.2)of ω, this condition becomes

ΞYa + CYα = 0.

As already noticed in the proof ofProposition 3(see(3.7)) this condition implies
Ya = 0. Thus, the vector fields symplectically orthogonal toπ have the form

Y = Ypu

∂

∂pu

+ Yqu
∂

∂qu
+ Yαi

∂

∂αi
with Yα ∈ kerC, (3.10)

and with arbitraryYp andYq . Hence, integrability of the distribution amounts to the
fact that, ifY andY ′ are any two vector fields of the form(3.10), then thea-component
of the Lie derivative [Y, Y ′] vanishes and itsα-component belongs to kerC. The first
condition is obviously verified becauseYa = Y ′

a = 0. The second condition is proven
by observing that bothYα andY ′

α are linear combinations of the vectorsξ1, . . . , ξk,
which form a basis of kerC. Since these vectors are constant, [Y, Y ′]α is also a linear
combination of them, and hence belongs to kerC.

(ii) It is known thatπ : M → P is symplectically complete if and only ifP is a Poisson
manifold andπ a Poisson morphism[19]. Hence, if{ , }P denote the Poisson brackets
of P , for any two functionsf andg onP one has

{f, g}P ◦ π = {f ◦ π, g ◦ π}M = ω(Xf ◦π ,Xg◦π ).

On the other hand, ifπ : M → P is symplectically complete, then a function on
M is constant on the fibers ofπ if and only if its Hamiltonian vector field belongs
to the distribution symplectically orthogonal toπ [19]. Hence, using the semilocal
expression(2.2)of the symplectic form and the fact thatXf ◦π andXg◦π have the form
(3.10), it is immediate to verify that theα-components of these two vector fields do not
contribute toω(Xf ◦π ,Xg◦π ). The conclusion is reached by observing that, on account
of (2.2), theq components ofXf are∂f/∂p, etc. The fact that thea’s are Casimirs
is obvious. �
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Remark. Eq. (3.10)shows that a vector fieldY symplectically orthogonal toπ is tangent
to π if and only if Yp = Yq = 0. Thus, the invariant tori are coisotropic if and only if there
are no(p, q)-coordinates, namely, as already stated, if 2d = k + n.

As we have already mentioned inSection 1, the polar foliationπω plays an important
role in the case of non-commutatively integrable systems. In the case of a generic broadly
integrable system, however, such a foliation need not be invariant under the flow of the
system (see remark below) and does not seem to have any special dynamical meaning. In-
stead, what acquires a dynamical meaning is the foliation obtained by lifting the symplectic
foliation of the Poisson manifoldP toM. Locally, this foliation is defined bya1, . . . , ak =
const.

Proposition 5.

(i) The lift to M of the symplectic foliation of P coincides withπ + πω. (π + πω denotes
the foliation generated by the sum of the two distributions generatingπ andπω.)3

(ii) The leaves ofπ + πω have dimension2d − k and are invariant under the flow of the
system.

(iii) If the symplectic foliation of P is a fibrationσ : P → A, where A is a k-dimensional
manifold, thenπ + πω is a fibrationM → A and A is an affine manifold.

Proof.

(i) The vectors tangent to the foliation described bya = const have the formP · ∂/∂p +
Q · ∂/∂q + R · ∂/∂α with P,Q ∈ R

(2d−n−k)/2 andR ∈ R
n. On the other hand, the

vectors tangent toπ have the formR · ∂/∂α with R ∈ R
n and the vectors tangent to

πω have the formP · ∂/∂p + Q · ∂/∂q + B · ∂/∂α with P,Q ∈ R
(2d−n−k)/2 and

B ∈ kerC. Thus, the sum of the latter two distributions coincides with the former one,
and is therefore Frobenius integrable.

(ii) The foliation is locally defined bya = const, thea’s being first integrals of the system.
(iii) This follows from the transition functions(3.2). �

Proposition 5shows that there are two invariant foliations which are naturally defined
in the phase space of a broadly integrable locally Hamiltonian vector field: the fibration
π by the invariant tori and the foliationπ + πω, that we callaction foliation. If π + πω

is a fibration, then its base manifoldA will be called theaction manifold. A is an affine
manifold (even though in general not an affine space) in that it possesses an atlas with affine
transition functions

aλ = Z̃λµaµ + zλµ,

this atlas defines an affine (and hence locally flat) connection onA, that we callaction
connection.

3 This implies that if a fibrationπ is symplectically complete then the distributionπ + πω is Frobenius
integrable—a statement which can be found in[8].
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Fig. 1. The structure of the fibration by the invariant tori.

Let us remark that, if the system is integrable in the non-commutative sense, then
its invariant tori are isotropic and the leaves of the polar foliation are coisotropic, so
that π + πω = πω and one has an isotropic–coisotropic dual pair. If the system is in-
tegrable in the Liouville sense, then the invariant tori are Lagrangian andπ + πω =
π = πω, so the two foliations coincide. The same happens if the system has coisotropic
tori, since thenπ + πω = π . From this geometric point of view, the coisotropic case
closely resembles the Lagrangian one. (The difference is however dynamical, since in
the coisotropic case there are necessarily fewer actions than frequencies). The general
case resembles the non-commutatively integrable one, withπ + πω playing the role
of πω.

As in the non-commutatively integrable case, the structure of the fibration by the in-
variant tori of a broadly integrable system is pictorially representable as inFig. 1, from
[10], where each flower stands for a leaf of the action foliation, its center represents a
symplectic leaf, and each petal is an invariant torus. We remark that the picture sug-
gests that each flower is topologically the product{symplectic leaf} × T

n, but this need
not be true since the fibration of each flower by the invariant tori could be topologi-
cally non-trivial, see also the next section. Moreover, the picture suggests that the flow-
ers sit on a base manifoldA, as is the case when the symplectic foliation ofP is a
fibration.

Remark .

(i) As we have anticipated, the polar foliationπω is in general not invariant under the
flow of the system. To show this, let us first observe that the actionsa and the local
functionsη · α, η ∈ Im C, are first integrals ofπω. (In fact, if Y is tangent toπω,
thenYa = 0 andYα ∈ kerC so thatLYal = 0 andLY (η · α) = 0.) On account of
Proposition 2, the frequencies of motions arew = Ξ(∂/∂a) + η for someη ∈ Im C,
that is,η orthogonal to ImΞ . Thus,(d/dt)α · η′ = w · η′ = η · η′ is constant for all
η′ ∈ Im C, but non-zero for some of them.

(ii) The intersection of the tangent spaces toπ andπω forms a Frobenius integrable
distribution too, but this foliation need not be invariant under the flow of the system
and does not seem to have any special dynamical meaning.
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4. Obstructions to global coordinates

We conclude our investigation by considering the obstructions to the existence of a global
system of admissible coordinates of action-angle type, whose local existence is stated in
Proposition 2. As already mentioned inSection 1, this investigation extends previous works
by Duistermaat[7], Dazord and Delzant[8] and Parasyuk[21]. For general informations
on the problem we refer to these works and to[1,6].

To be definite, we consider only the case in which the symplectic foliation ofP is a
fibrationσ : P → A. Let us fix an atlas of admissible coordinates of action-angle type

(aλ, pλ, qλ, αλ) : Uλ → R
2d−n × T

n, λ ∈ Λ ⊂ N.

LetU = {Uλ : λ ∈ Λ}. Such an atlas allows the definition of four sets of data defined by the
coordinate changes(3.1)–(3.3): the matricesZλµ andZ̃λµ, the mapsFλµ, and the vectors
zλµ. These families form cocycles, the non-triviality of which constitute obstacles to the
existence of global coordinates.

More precisely, the family of matrices{Zλµ} defines a cocycle which is an element
of

√
H

1
(U,SL±(n,Z)) and is called themonodromyof the fibrationπ : M → P . The

vanishing of this cocycle amounts to the existence of matricesVλ ∈ SL±(n,Z),λ ∈ Λ, such
thatZλµ = V −1

λ Vµ for all λ andµ. Equivalently, there is an admissible atlas of action-angle
type with all matricesZλµ = In; this is proven by observing that the new anglesα̃λ = Vλαλ
have transition functions̃αλ = α̃µ + VλFλµ.

Similarly, the family{Z̃λµ} defines a cocycle which is an element of
√
H

1
(U,GL(k,R)).

For reasons to be explained, we call this cocycle theholonomyof the action manifoldA. The
vanishing of this cocycle means thatZ̃λµ = Ṽ −1

λ Ṽµ for certain matrices̃Vλ, Ṽµ ∈ GL(k,R).
Equivalently, there is an admissible atlas of action-angle type with all matricesZ̃µλ = Ik.
In the case of non-commutative and complete integrability(k = n) one hasZλµ = Z̃λµ

and the two cocycles coincide, so that there is only one obstruction. The two cocycles have
instead different roles in the general case, including the coisotropic one:4

Proposition 6.

(i) The monodromy vanishes if and only ifπ : M → P is a principal bundle.
(ii) The holonomy vanishes if and only if the action connection of A has no holonomy

(namely, is globally flat).
(iii) The holonomy vanishes whenever the monodromy does.

Proof.

(i) As remarked, the monodromy vanishes if and only if there is an admissible atlas for
M with angles having transition functionsα̃µ = α̃λ +VsFλµ; this is equivalent to the
fact thatπ : M → P is a principal torus bundle.

(ii) If Z̃λµ = (Ṽµ)
−1Ṽλ, then the new coordinates̃aλ = Ṽλaλ have transition functions

ãµ = ãλ + zλµ. Hence the action connection is globally flat.

4 In [21], the emphasis is on the existence of global coordinates and thus only the monodromy is considered.
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(iii) Choose an admissible atlas with all matricesZλµ = In. Then by(3.8) all matrices
Cλ are equal to each other, sayCλ = C, and all matricesΞλ have the same image,
namely kerC. Thus, the rows of the matricesΞλ form different orthonormal bases of
kerC. With a linear transformations of the actionsaλ in each chart, corresponding to
a suitable change of basis in kerC, one can make all matricesΞλ equal to each other.
Thus, by(3.4), all matricesZ̃λµ = Ik. �

Remark.

(i) A sufficient condition for the vanishing of the monodromy (respectively, of the holon-
omy) is the simply connectedness ofP (respectively, ofA).

(ii) In the isotropic casek = n, the individual fibers ofπ + πω (the flowers ofFig. 1)
have no monodromy, in the sense that each of them can be covered with an admissible
subatlas with all matricesZ = In. Therefore, each of them is a principal torus bundle. It
is thus possible to characterize the flowers as families of invariant tori carrying motions
with equal frequencies (see[9] for the relevance of this fact in perturbation theory).
This is not necessarily true for a generic broadly integrable system.

(iii) When the monodromy is zeroM is a symplectic manifold endowed with a non-Poisson
principal torus action. Non-Poisson torus actions on compact symplectic manifolds
have been studied in[2,14,15]. The compactness hypothesis implies the rationality
of ker C; hence, by the Atiyah–Guillemin–Sternberg convexity theorem, the action
manifoldA is a convex polytope.

(iv) It follows from Proposition 6and its proof that, if the monodromy vanishes, then there
is an admissible atlas such that

Zλµ = In, Z̃λµ = Ik, Cλµ = C,

Ξλµ = Ξ, CdFλµ = 0 (4.1)

for some matricesC andΞ . The last equality follows from(3.9); in it, dFλµ stands for
the Jacobian matrix(∂Fλµ/∂a, ∂Fλµ/∂p, ∂Fλµ/∂q). Note that, properly speaking, the
vanishing of the monodromy does not imply the existence of global action coordinates:
on the one hand, the transition functions between the local actions have the formaλ =
aµ+zλµ with possibly non-zerozλµ; on the other hand, even if allzλµ vanish, the local
actionsaλ define a mapa which might be not injective (hence the action manifold need
not be diffeomorphic toRk). However, if the holonomy vanishes, the differentials dal
are always global 1-forms.

If the monodromy vanishes, then the families of vectorszλµ and of mapsFλµ define other
two cocycles. The second of these cocycles is an element of

√
H

1
(U,T

n) and is called the
Chern classof the fibrationπ : M → P . The vanishing of the Chern class means that there
exist mapsfλ(aλ, pλ, qλ), λ ∈ Λ, such that

Fλµ = fµ − fλ ◦ Cλµ,
whereCλµ is the transition map from theµ-coordinates to theλ-coordinates. From a geomet-
ric point of view, the vanishing of the Chern class is equivalent to the existence of a global
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section of the fibration. In fact, in an admissible atlas withZλµ = In, the shifted angles
ϕλ = αλ+fλ have transition functionsϕλ = ϕµ, so that the equationsϕλ = 0,λ ∈ Λ, define
a global section. However, this shift does not produce an admissible system of coordinate
of action-angle type, unless the functionsfλ have some special property, seeProposition 8.

Proposition 7. Assume that the monodromy vanishes. Then

(i) The cocycle{zλµ} vanishes if and only if the Poisson manifold P has k independent
global Casimirs.

(ii) The Chern class vanishes if and only if the fibrationπ : M → P is trivial.
(iii) If the Chern class vanishes, then there exists a(non-unique) closed 2-form in P that,

restricted to the symplectic leaves, is the symplectic structure of the leaves. We call
any such 2-form a “Poisson 2-form”.

Proof. Choose an admissible atlas which satisfies conditions(4.1).

(i) Triviality of {zλµ} meanszλµ = vµ − vλ for some vectorsvλ, vµ. Thus, the compo-
nents of the shifted actionsaλ + vλ have identical transition functions and definek

independent global Casimirs.
(ii) A principal bundle which has a global section is trivial.

(iii) Let Fλµ = fµ −fλ. We show that the 2-forms defined within each coordinate domain
by

ω̃λ = Ξ daλ ∧ dfλ + dpλ ∧ dqλ

are the local representatives of a closed, non-degenerate 2-form onP . Clearly, the only
fact that needs to be proven is that the local formsω̃λ are compatible, that is,̃ωλ = ω̃µ

on intersecting domains. SinceC dFλµ = 0, one has

C dαλ ∧ dαλ = C(dαµ + dFλµ) ∧ (dαµ + dFλµ) = C dαµ ∧ dαµ,

and hence the symplecticity condition

Ξ daλ ∧ dαλ + dpλ ∧ dqλ + 1
2C dαλ ∧ dαλ

= Ξ daµ ∧ dαµ + dpµ ∧ dqµ + 1
2C dαµ ∧ dαµ

reduces tõωλ = ω̃µ since daλ = daµ. �

In the Lagrangian and isotropic cases, a sufficient condition for the vanishing of the
cocycle{zλµ} is the exactness of the symplectic 2-formω [7,8]. This condition plays no
role in our case since in the non-isotropic case the symplectic form cannot be exact.

Results about the existence of “global action-angle coordinates” have been given in the
already quoted articles by Duistermaat, Dazord and Delzant and Parasyuk under the hy-
pothesis that the Chern class vanishes. These results generalize to the following proposition.

Proposition 8. Assume that the monodromy and the Chern class vanish. Consider an
admissible atlas which satisfies conditions(4.1). DenoteFλµ = fµ − fλ and assume that
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there is a choice of the functionsfλ such that

C dfλ = 0, λ ∈ Λ. (4.2)

Then, there exist global 1-formsdal , global anglesαi , and a Poisson 2-form̃ω such that

ω = Ξ da ∧ dα + 1
2C dα ∧ dα + ω̃.

Proof. Defineα = αλ + fλ in each chart domain,λ ∈ Λ. SinceC dfλ = 0, the local
expression of the symplectic formω is

Ξ daλ ∧ dαλ + dpλ ∧ dqλ + 1
2C dαλ ∧ dαλ = Ξ da ∧ dα + ω̃λ + 1

2C dα ∧ dα,

as claimed. �

Remark. Condition(4.2) is a compatibility requirement between the Poisson 2-form and
the choice of the angle coordinates. This condition obviously does not appear in the La-
grangian and isotropic cases. An equivalent condition (exactness of a certain formΘ) is
used by Parasyuk in his study of the coisotropic case. Parasyuk also gives conditions which
ensure that̃ω is exact: these conditions have some interest in the coisotropic case because, in
that case, they ensure that it is possible to eliminateω̃with a change of the angle coordinates.
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