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Abstract

We study the geometry of the fibration in invariant tori of a Hamiltonian system which is inte-
grable in Bogoyavlenskij's “broad sense”—a generalization of the standard cases of Liouville and
non-commutative integrability. We show that the structure of such a fibration generalizes that of
the standard cases. Firstly, the base manifold has a Poisson structure. Secondly, there is a natural
way of arranging the invariant tori which generates a second foliation of the phase space; however,
such a foliation is not just the polar to the invariant tori. Finally, under suitable conditions, there is a
notion of an “action manifold” with an affine structure. We also study the analogous of the problem
of the existence of “global action-angle coordinates” for these systems.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Integrability of Hamiltonian systems is usually identified with “Liouville” or “complete”
integrability: the system has the maximal number of independent integrals of motion in
involution (@, if the phase space has dimensiaf) 2nd their level sets are Lagrangian
submanifolds which, if compact, are tori. The local structure of this Lagrangian fibration is
described by the Liouville—Arnold theorem on action-angle coordinates.

Nevertheless, complete integrability does not exhaust the variety of possible situations.
The most important reason is that many systems have more integrals of motion than degrees
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of freedom, say 2 — n integrals of motion for some @ n < d, and quasi-periodic motions

on tori of dimensiom < d. In many cases, including such important classical systems like
the Kepler system and the Euler—Poinsot rigid body, systems of this type are integrable in
the “non-commutative” sense of Fomenko and Mischdii®) (see alsd17]).

Geometrically, non-commutative integrability is characterized by the fact that the invari-
ant tori are isotropic and that, moreover, the fibration by the invariant tori is “symplectically
complete”. The latter property can be characterized in two equivalent ways: (i) the fibration
possesses a “polar” foliation, that is a foliation whose leaves are symplectically orthogonal
to the invariant tori, or, (ii) the fibration is a Poisson morphism onto a Poisson manifold
P. These two characterizations are linked by the fact that the (coisotropic) polar foliation
is the lift to the manifold of the symplectic foliation @f. This doubly foliated structure,
which in symplectic geometry is called with various names, among which “dual [2&}”
and “bifoliation” [16], plays an important role for the comprehension of superintegrable
systems (see, e.fL0] and, for applicationd9,12]).

Onthe other hand, there are also Hamiltonian systems which have fewdiitittegrals of
motion but nevertheless have quasi-periodic motions on tori which have dimension greater
thand and are coisotropic. Systems of this type have been extensively studied by Parasyuk
(see, e.g[20-22).

However, the picture is not yet complete because there exist Hamiltonian systems whose
motions are quasi-periodic on tori which are neither Lagrangian nor isotropic nor coisotropic
[3,4,11] Even though there is no known example of a system of this kind arising from a
mechanical problem, and moreover systems of this kind are rather special (they exist, for
instance, only in non-exact symplectic manifolds, fgé&1] for details), their very exis-
tence raises some fundamental questions about the concept itself of integrable Hamiltonian
system. One further reason of interest is that systems of this kind are related to non-Poisson
symplectic torus actions on symplectic manifolds, a subject the study of which has been
initiated only very recently (s€@,14,15).

Animportant advancement in the comprehension of the situation is due to Bogoyavlenskij
[3-5], who formulated a criterion for integrability of Hamiltonian systems (as well as not
Hamiltonian systems) which is general enough to account for all the known cases—and to
unify them. In short, Bogoyavlenskij calls a Hamiltonian system wittegrees of freedom
“integrable in the broad sense” if it possesses

e 24 — n first integrals with compact level sets, and
e n independent symmetries which commute and preserve the first integrals.

The common level sets of these integrals of motion, if compact, are obvietdiiyen-
sional tori which carry linear motions. Under a natural (but crucial) additional non-resonance
hypothesis, called™-density, Bogoyavlenskij characterized the local structure of the fi-
bration by these tori in terms of the existence of local coordinates which generalize the
action-angle coordinates.

The aim of this paper is to go one step further by investigating the global structure of the
fibration by the invariant tori of @ -dense broadly integrable Hamiltonian system. Our idea
is to try to understand if these systems are fundamentally different from the standard ones
by looking at the global properties of the fibration by their invariant tori. As we will see,
even though there are some differences, the global geometry of the fibration by the invariant
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tori generalizes in a natural way the “dual pair” structure of non-commutative integrability.
In fact, there is still a naturally defined doubly foliated structure, the second foliation being
now the direct sum of the polar foliation and of the fibration itself. Furthermore, as in the
standard case, the base of the fibration by the invariant tori has a Poisson structure and the
second foliation is the lift of the symplectic foliation of this Poisson manifold. Finally, if the
second foliation is a fibration, then as in the standard case its base has an affine structure.
In addition, we will also investigate the analog of the problem of the existence of “global
action-angle coordinates” for a broadly integrable system. This problem has been studied
by Duistermaaf7] for the completely integrable case, by Dazord and Del@intor the
non-commutatively integrable case, and by Parag@kfor the coisotropic case. As we
shall point out, the main novelty with respect to the completely and non-commutatively
integrable cases is that the monodromy of the fibration and the holonomy of the action
manifold do not coincide, even though they are still related.

2. Bogoyavlenskij's broad integrability

Broad integrability Bogoyavlenskij's definition of broad integrability applies to any
vector field, not necessarily Hamiltonian:

Definition 1. A vector fieldX on a manifoldM of dimensionw is “integrable in the broad
sense” if there exist

() Afibrationz : M — P with fibers of dimensiom < N which are compact, connected
and invariant under the flow df. (P is a manifold of dimensioV — n.)

(i) For any pointp € P, a free infinitesimal action of" on 7 ~1(U), whereU c P is a
neighborhood of, which leaves invariant the vector fieMand the fibers ofr.

In fact, Bogoyavlenskij expresses condition (i) by requiring the existendé -efn first
integrals ofX which are almost everywhere independent. The level sets of these integrals
give rise to a foliation of\/. Since we are only interested to the regular leaves of such a
foliation and since a submersion with compact fibers is a fibration, we consider a fibration
instead. This slightly more general hypothesis allows us to avoid any reference to a particular
set of first integrals and to focus on the geometric object itself. Condition (ii) is equivalent
to the existence of sets af‘semilocal” vector fieldsy, ..., ¥,, which pairwise commute
(i.e. [;, Y;] = 0), are infinitesimal symmetries & (i.e. [X, ¥;] = 0) and are tangent to
the fibers ofz (i.e. Ly, f = O for any first integralf of =; a first integral of a fibration is
any function constant on its fibers). It is a standard matter to prove that

Proposition 1. If X is integrable in the broad sense then

(i) The fibers ofr are diffeomorphic tar".
(ii) Every fiber ofr has a neighborhood c M and a diffeomorphisr@ = (b, «) : U —
W x T", whereW c RV~=", such that

9
C* Xy (b, o) = w(b) 5~ (2.1)

with w a map from W tdR”.
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Proof. (i) The fibers ofr are tori because they possegsairwise commuting and linearly
independent tangent vector fields. (ii) Any setafidependent local first integrals sfcan
be taken ag-coordinates; the anglesare in fact constructed within the proof of (i). O

In the sequel, we shall often call “invariant tori” the fiberszof Our analysis will be
restricted to a special (but quite natural) class of broadly integrable systems. The reason
for such a restriction is that all the integrals of motion of a system should be taken into
consideration when defining the fibratiar—it should not be possible to subdivide all the
invariant tori into invariant tori of a smaller dimension. This happens if there are sufficiently
many non-resonant tori:

Definition 2. A broadly integrable system is said to b&™dense” if a dense set of its
invariant tori are closure of orbits.

Remark. Following for instancg13], one might call a system “integrable” if it is possible

to choose, at least locally, coordinaiés«) € R%?—" x T" such that the vector field has

the form(2.1). Any integrable system is broadly integrabbe; . .., bo,;_, are integrals of
motion andd/day, ..., 3/da, are commuting symmetries which preserve be Thus,

the notion of broad integrability includes essentially all systems with quasi-periodic dy-
namics and is therefore very general. Whether broad integrability is an effective criterion
for integrability depends to a large extent on the possibility of finding natural mechanisms
to produce, in concrete cases, the torus fibration (namely, the integrals of motions) and the
symmetries.

The Hamiltonian casé/Me now specialize to the (locally) Hamiltonian case. We assume
that M has dimensioV = 24 and carries a symplectic form, and that the vector field
X is locally Hamiltonian, namely, the 1-forigw is closed. A “local Hamiltonian” of is
any functionH, possibly defined in a subset &, such thaixw = —dH. The vector field
is said to be Hamiltonian ifyw is exact. For the present analysis it is natural to consider
the locally Hamiltonian case.

The basic result of Bogoyavlenskij's analysis, which is central to the present investigation,
is the following Proposition, special cases of which were also givgair21] In order
to simplify the notation, we understand sums over repeated indices and we tacitly use the
following conventions aboutindexas; = 1,...,n;l,m =1,... . kju,v=1,..., (2d—
n — k)/2, with k defined below.

Proposition 2 (Bogoyavlenskij).Let X be a locally Hamiltonian, broadly integrable and
T"-dense vector field on a symplectic manifld, »). Letz : M — P be the fibration by
its invariant tori. Then

(i) The restriction ofv to the fibers ofr has constantrank =n — k, 0 < k < n.
(i) Every invariant torus has a neighborhood U equipped with coordingiep, g, o)
with values inR¥ x RG4—n=k)/2 y R@d=n=k)/2  Tn gych that

wly = Ej da; A da;j + dpy A dg, + 3Cjj da;j A da; (2.2)

1 Such a system is also said “to hawdrequencies|11,17]
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for a constant antisymmetric x n matrix C of rank r and a constarnit x k matrix &
of rank k the rows of which form an orthonormal basis for ker C, that is

ETE =1, Im & = kerC, (2.3)
wherell, is thek x k identity matrix (If & = 0 then C has full rank, there are no
a-coordinates an&Z = 0. If k + n = 2d then there are ngp, ¢)-coordinates)

(iii) Givenasystem of such coordinates, there exist a funétioy unique up to an additive
constant, and a unique vectgre Im C such that

d

oh
Xy = [Ea—(a) + 17:| —_— (2.4)
a ; 0o

Moreover, every local Hamiltonian of X has the fohra) + Ca - n + const

In the sequel we call “admissible coordinates of action-angle type” or simply “admissible
coordinates” any set of semilocal coordinatesp, ¢, «) as inProposition 2 The coordi-
natesz will be called “actions” and the coordinateswill be called “angles”. The meaning
of the remaining coordinatgs ¢ will become clear later. Note that the rank@f namely
r =n —k, is always even.

It may be useful to illustrate the notion of broad integrability giving some examples
and remarks. First of all, note that the invariant tori (i.e. the fibers )o&re isotropic or
Lagrangian if and only ifC = 0, or equivalentlyk = n. In fact, the standard cases of
integrability, namely complete and non-commutative integrability, are recoveredinaen
n = d and, respectivelys = n < d. (In the latter case, the existence of the polar foliation
follows from the existence affirstintegrals ofr which pairwise Poisson commute, namely,
the actions; segl1] for some comments.)

Therefore, in this paper we focus on the cise n. In such a case there are fewer actions
than angles, the matriX is non-zero and hence the symplectic fapris not exact. Systems
of this kind may have both < d andn > d. Whenn < d the invariant tori are not isotropic
(Lagrangian, ifn = d); for instance, the locally Hamiltonian system defined by

M=]R2><T25(p,q,oz1,(x2), o =dp A dg + dog A day,
d d
X=—+4+vV2— (2.5)
daq doo
is aT?-dense broadly integrable system with no actidns=(0 because in this cage is
non-singular). When > d the tori may or may not be coisotropic. As it will be clear later,
the coisotropic case is met whén= 2d — n.

Remark.

(i) Thevectorfield9/d«; aren independentlocally Hamiltonian commuting symmetries.
If k < n, however, not all of them are Hamiltonian (not even in a neighborhood of
an invariant torus). In fact, in the coordinate neighborhéhdhere exist at most
independent commuting symmetries which are Hamiltonian. To see this, denote by
g1 ..., &" the rows of the matrixz, which form an orthonormal basis of kér, and
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consider any basig', ..., n"* of (kerC)*. Then, thek symmetriest’ - 9/0a are
Hamiltonian (inU) but then — k symmetries)’/ - /9« are only locally Hamiltonian:
one has in fact

a A ;
1)) <§l e ) = —da, 1) (77] g ) =Cn’ - da.

Moreover, wherk < n the semilocall”-action generating the invariant tori is never
Poisson (an action is Poissonuifvanishes on any two fundamental vector fields, see,
e.g.[19)]).

(if) The flows of the Hamiltonian vector fields,, .. ., X,, of the actions generate a toral
subbundle of the fibratiom if and only if kerC is a rational subspace Bf* (otherwise
some of these flows are dense in a torus of dimension greatekhan

(i) In the isotropic cas& = n one can always choose the coordinate® thats = I,,.
(In fact Z' is invertible and one can make the change of coordinates Za.)

3. Global structure

The transition functionsWe now study the (global) geometry of the fibration by the
invariant tori of a broadly integrable Hamiltonian system. To this end, we begin by deter-
mining the transition functions between different sets of semilocal coorditatesq, «)
of Proposition 2

Proposition 3. Assuméa, p, ¢, a) and(a’, p’, q’, &’) are two systems of semilocal coor-
dinates as irProposition 2Denote bySL 4 (r, Z) the subgroup oGL (r, Z) of unimodular
matrices and bye' and =’ the matrices entering the expressi@?2) of w in the two coor-
dinate systems. Then, in the intersection of their dom@imet empty one has

o =Za+ Fa, p,q), (3.1)
a'=Za+z, (3.2)
p'=Pa.p.q. ¢ =09@, p.q), (3.3)

whereZ e SL.(n, Z) is a constant matrixz € R¥ is a constant vectorF, P and Q are
maps, and

7z =

o

T77TE € GL(k, R). (3.4)

Proof. Let us writeb = (a, p,q) andb’ = (d’, p’, q’). Thus obviouslyy’ = b'(b). We
begin by showing that transformation ri& 1) for the angles follows from the assumption
of T"-density alone. In fact, lat’ = «’(b, ) be such a transformation. Then, along a
motion of the system one as

a' (b, a0+ wb)t) =o' (b, ag) + w' (b (b))t.

2 Itis understood that all equalities among angles are mad 2
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For a dense subset of valuesigfthe curvexg + w(b)t is dense on the torus; hence, by
continuity, for anyb one has

o' (b,ag+ 1) =o' (b, a0) + &' (b, 1) Vo, 1 € T"

so thate — o'(b, ) is linear on each torus!’ (b, ) = Z(b)a + F(b). Here the matrix
Z(b) must belong to SL(n, Z) and hence is constant.

We now prove the transformation ry{e.2) for the actions (ik # 0). To this end, we use
the simplecticity of the two sets of coordinates, namely

Z'da’ Ada’ +dp’ Adg’ + %C/ da’ A do’
= & da Ada+dp Adg + 3Cda A da. (3.5)

Usinga’ = Za + F(b) one sees that the coefficients af d da in the above equation give

VAl <"/ai + C/af)

8

3 o (3.6)

SinceETE =y and2'TC’ = —(C'E")T = 0, seq2.3), one obtainda’/da = Z after left
multiplication byZ’TZ~T. In order to conclude the proof it suffices to show thalt/9p =
da’/dq = 0. The coefficients of the termgd.dx in (3.5)give ZT (534’ /ap+C'd F/dp) =
0, thatis

da’ oF

g - 2 (3.7)

ap ap
Since Im&’ and ImC’ = (kerC)* are orthogonal, the left- and right-hand sides of the
latter equations must both vanish. SiriEehas maximal rank, this impliek:’/dp = 0, as

claimed. The proof thata’/dg = 0 is analogous. a
Remark.
() The matrice<C andC’ satisfy

c=27'Ccz. (3.8)

Egs. (3.6) and (3.7mply

9 - 3 3
T 'Z, ¥ _ 0, ¥ o (3.9)
da ap ag

[x]
[I]

(i) Itis not difficult to verify that the function& andh’ and the vectorg andn’ entering
the local expression®.4) of the vector fieldX in the two coordinate systems satisfy

h(a)=h(Za+3) +B- Ea, n=2Zn— 2B

for someg € kerC. If X is Hamiltonian, therg = 0.

The generalized dual pai¥We now use the information &froposition 3o infer the global
geometry of the fibratiomr : M — P. We assume tha¥ has dimension2, that P has
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dimension 2 —n, and that there areactions. With a minor abuse of notation, the semilocal
coordinate$ = (a, p, ¢) can be regarded as local coordinates on the base maifold

Proposition 4.

(i) = : M — P is symplectically complete, that is, possesses a polar foliatitn
(ii) P hasa Poisson structure of constant rélak—n —k such thatr is a Poisson morphism.
In local coordinatega, p, ¢), the Poisson brackets on P are

af dg  9f og
Opu 9qu  9qu Opu’
anday, ..., a; are local Casimirs

{fvg}P =

Proof.

(i) We need to show that the distribution which is orthogonally symplecticisd-robenius
integrable. A vector field” is symplectically orthogonal to the fibers ofif and only
if w(Y,d/0a;) =0foralli =1,...,n. IfwewriteY =Y, (d/0a;) + Y, (3/0pu) +
Y, (3/9q.) + Y4, (3/9c;) and use the expressi¢a.2) of w, this condition becomes

EY,+CY, =0.

As already noticed in the proof d?roposition 3(see(3.7)) this condition implies
Y, = 0. Thus, the vector fields symplectically orthogonaitbave the form

ad ad ad .

Y:Ypua'f’yquﬁﬁ-yaia—ai with Y, € kerC, (310)
and with arbitraryY,, andY,. Hence, integrability of the distribution amounts to the
fact that, ifY andY’ are any two vector fields of the for(8.10) then thez-component
of the Lie derivative ¥, Y’] vanishes and ite-component belongs to ket. The first
condition is obviously verified becaugg = Y, = 0. The second condition is proven
by observing that botly, andY,, are linear combinations of the vectass . .., &,
which form a basis of ke€. Since these vectors are constatit,}'],, is also a linear
combination of them, and hence belongs to®er

(ii) Itis known thatr : M — P is symplectically complete if and only # is a Poisson
manifold andr a Poisson morphisiii9]. Hence, if{, }p denote the Poisson brackets
of P, for any two functionsf andg on P one has

{f.glpom={fom gonty =X for, Xgor)-

On the other hand, it : M — P is symplectically complete, then a function on
M is constant on the fibers af if and only if its Hamiltonian vector field belongs
to the distribution symplectically orthogonal to [19]. Hence, using the semilocal
expressiorf2.2) of the symplectic form and the fact that,, andX,., have the form
(3.10) it is immediate to verify that the-components of these two vector fields do not
contribute taw (X 7oz, X0 ). The conclusion is reached by observing that, on account
of (2.2), theq components o ; aredf/dp, etc. The fact that the's are Casimirs

is obvious. a
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Remark. Eq. (3.10)shows that a vector field symplectically orthogonal ta is tangent
tox ifand only if Y, = ¥, = 0. Thus, the invariant tori are coisotropic if and only if there
are no(p, q)-coordinates, namely, as already stateddi£2k + n.

As we have already mentioned 8ection 1 the polar foliationz® plays an important
role in the case of non-commutatively integrable systems. In the case of a generic broadly
integrable system, however, such a foliation need not be invariant under the flow of the
system (see remark below) and does not seem to have any special dynamical meaning. In-
stead, what acquires a dynamical meaning is the foliation obtained by lifting the symplectic
foliation of the Poisson manifol@ to M. Locally, this foliation is defined by;, . .., ay =
const.

Proposition 5.

(i) The lift to M of the symplectic foliation of P coincides witht- 7. (& + 7 denotes
the foliation generated by the sum of the two distributions generatiagd.)3
(ii) The leaves of + 7 have dimensio@d — k and are invariant under the flow of the
system
(iii) If the symplectic foliation of P is a fibratios : P — A, where A is a k-dimensional
manifold, thent + 7 is a fibrationM — A and A is an affine manifold

Proof.

(i) The vectors tangent to the foliation describeddyt const have the forn® - a/9p +
Q-9/3g + R -9/da with P, Q0 € R©4~1-K/2gndR e R". On the other hand, the
vectors tangent ta have the formR - 9/0a with R € R” and the vectors tangent to
7 have the formP - 3/dp + Q - 3/dq + B - 3/da with P, Q € R@—-K/2 gnd
B € kerC. Thus, the sum of the latter two distributions coincides with the former one,
and is therefore Frobenius integrable.

(i) Thefoliation islocally defined by = const, the:'s being first integrals of the system.

(i) This follows from the transition functiong3.2). O

Proposition 5shows that there are two invariant foliations which are naturally defined
in the phase space of a broadly integrable locally Hamiltonian vector field: the fibration
7 by the invariant tori and the foliation + 7, that we callaction foliation If 7 + 7¢
is a fibration, then its base manifold will be called theaction manifold A is an affine
manifold (even though in general not an affine space) in that it possesses an atlas with affine
transition functions

a) = Zyuay + Zy,

this atlas defines an affine (and hence locally flat) connectiod ,athat we callaction
connection

3 This implies that if a fibrationz is symplectically complete then the distributian+ 7 is Frobenius
integrable—a statement which can be foun@8h



F. Fas®, A. Giacobbe / Journal of Geometry and Physics 44 (2002) 156-170 165

Fig. 1. The structure of the fibration by the invariant tori.

Let us remark that, if the system is integrable in the non-commutative sense, then
its invariant tori are isotropic and the leaves of the polar foliation are coisotropic, so
thatn + 7“ = 7x® and one has an isotropic—coisotropic dual pair. If the system is in-
tegrable in the Liouville sense, then the invariant tori are Lagrangianmandz® =
7 = n®, so the two foliations coincide. The same happens if the system has coisotropic
tori, since thenr + 7® = m. From this geometric point of view, the coisotropic case
closely resembles the Lagrangian one. (The difference is however dynamical, since in
the coisotropic case there are necessarily fewer actions than frequencies). The general
case resembles the non-commutatively integrable one, mith 7® playing the role
of 7.

As in the non-commutatively integrable case, the structure of the fibration by the in-
variant tori of a broadly integrable system is pictorially representable &gginl, from
[10], where each flower stands for a leaf of the action foliation, its center represents a
symplectic leaf, and each petal is an invariant torus. We remark that the picture sug-
gests that each flower is topologically the prod{sstmplectic leaf x T", but this need
not be true since the fibration of each flower by the invariant tori could be topologi-
cally non-trivial, see also the next section. Moreover, the picture suggests that the flow-
ers sit on a base manifold, as is the case when the symplectic foliation Rfis a
fibration.

Remark .

(i) As we have anticipated, the polar foliatiatt’ is in general not invariant under the
flow of the system. To show this, let us first observe that the acticarsd the local
functionsn - «, n € Im C, are first integrals ofr®. (In fact, if Y is tangent tar®,
thenY, = 0 andY, € kerC so thatLyaq; = 0 andLy (5 - «) = 0.) On account of
Proposition 2the frequencies of motions ave= = (d/da) + n for somen € Im C,
that is,n orthogonal to Im='. Thus,(d/df)a -’ = w - ' = n - ' is constant for all
n’ € Im C, but non-zero for some of them.

(i) The intersection of the tangent spacesatcand 7 forms a Frobenius integrable
distribution too, but this foliation need not be invariant under the flow of the system
and does not seem to have any special dynamical meaning.
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4. Obstructions to global coordinates

We conclude our investigation by considering the obstructions to the existence of a global
system of admissible coordinates of action-angle type, whose local existence is stated in
Proposition 2As already mentioned iection 1 this investigation extends previous works
by Duistermaaf7], Dazord and Delzar{8] and Parasyuk21]. For general informations
on the problem we refer to these works andiit®].

To be definite, we consider only the case in which the symplectic foliatioA &f a
fibrationo : P — A. Let us fix an atlas of admissible coordinates of action-angle type

(ak,p)h,qk,a)h):U)L—)RZd_n XT", reACN.

Letd = {U, : A € A}. Such an atlas allows the definition of four sets of data defined by the
coordinate chang€8.1)—(3.3) the matricesZ, , andZw, the maps¥,,,, and the vectors
Zyu- These families form cocycles, the non-triviality of which constitute obstacles to the
existence of global coordinates.

More precisely, the family of matriceZ;,,} defines a cocycle which is an element
of JHl(u, SLi(n,Z)) and is called thenonodromyof the fibrationz : M — P. The
vanishing of this cocycle amounts to the existence of matiiges SL.(n, Z), A € A, such
thatz,, = V{lvﬂ for all A andu. Equivalently, there is an admissible atlas of action-angle
type with all matrice<Z,,, = I,;; this is proven by observing that the new anglgs= V, a,
have transition functiond), = &, + Vi F,..

Similarly, the family{Zw} defines a cocycle which is an elemenmﬂl(u, GL(k, R)).

For reasons to be explained, we call this cocycléiienomyof the action manifoldi. The
vanishing of this cocycle means gy, = V, *V,, for certain matrice®;, V,, € GL(k, R).
Equivalently, there is an admissible atlas of action-angle type with all matziges= T .

In the case of non-commutative and complete integrabkity= n) one hasz,, = ZW

and the two cocycles coincide, so that there is only one obstruction. The two cocycles have
instead different roles in the general case, including the coisotropit one:

Proposition 6.

(i) The monodromy vanishes if and onlyrif M — P is a principal bundle
(i) The holonomy vanishes if and only if the action connection of A has no holonomy
(namely, is globally flgt
(iii) The holonomy vanishes whenever the monodromy. does

Proof.

(i) As remarked, the monodromy vanishes if and only if there is an admissible atlas for
M with angles having transition functiodg, = a, + V;F,,; this is equivalent to the
fact thatr : M — P is a principal torus bundle.

(i) If Zy, = (V,)~1V, then the new coordinatés = V;a, have transition functions
a, = ay + z,. Hence the action connection is globally flat.

4 In [21], the emphasis is on the existence of global coordinates and thus only the monodromy is considered.
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(iii) Choose an admissible atlas with all matricgs, = I,. Then by(3.8) all matrices
C, are equal to each other, sy = C, and all matricesz, have the same image,
namely kerC. Thus, the rows of the matrices, form different orthonormal bases of
ker C. With a linear transformations of the actiomsin each chart, corresponding to
a suitable change of basis in k&r one can make all matrices, equal to each other.
Thus, by(3.4), all matricesZ;, = Ij. |

Remark.

(i) A sufficient condition for the vanishing of the monodromy (respectively, of the holon-
omy) is the simply connectedness®f(respectively, ofd).

(ii) In the isotropic cas& = n, the individual fibers ofr + 7 (the flowers offFig. 1)
have no monodromy, in the sense that each of them can be covered with an admissible
subatlas with all matrice® = I,,. Therefore, each of them is a principal torus bundle. It
is thus possible to characterize the flowers as families of invariant tori carrying motions
with equal frequencies (s¢@] for the relevance of this fact in perturbation theory).
This is not necessarily true for a generic broadly integrable system.

(iii) When the monodromy is zer#d is a symplectic manifold endowed with a non-Poisson
principal torus action. Non-Poisson torus actions on compact symplectic manifolds
have been studied if2,14,15] The compactness hypothesis implies the rationality
of ker C; hence, by the Atiyah—Guillemin—Sternberg convexity theorem, the action
manifold A is a convex polytope.

(iv) It follows from Proposition @nd its proof that, if the monodromy vanishes, then there
is an admissible atlas such that

Zku =1, ZA;/, =1, CA;,L =C,
S =&  CdF, =0 (4.1)

for some matrice€ andZz'". The last equality follows fronB.9); in it, d.F, , stands for

the Jacobian matrigd 7, /da, d.F,,./dp, 0Fy./dq). Note that, properly speaking, the
vanishing of the monodromy does notimply the existence of global action coordinates:
on the one hand, the transition functions between the local actions have the, ferm

a, + 25, With possibly non-zere;, ,; on the other hand, eveniif all, vanish, the local
actionsz, define a mag which might be notinjective (hence the action manifold need
not be diffeomorphic t&®¥). However, if the holonomy vanishes, the differentials d

are always global 1-forms.

If the monodromy vanishes, then the families of vectgpsand of mapsF; , define other

two cocycles. The second of these cocycles is an eIemeMH;’f(U, T") and is called the
Chern clas®f the fibrationr : M — P. The vanishing of the Chern class means that there
exist mapsfy. (ax, px, ¢,.), A € A, such that

Fop = fu— froCy,

whereC,, is the transition map from the-coordinates to the-coordinates. From a geomet-
ric point of view, the vanishing of the Chern class is equivalent to the existence of a global
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section of the fibration. In fact, in an admissible atlas witf), = I,,, the shifted angles

@, = ay+ fi, have transition functiong, = ¢, so thatthe equatiogs, = 0,1 € A, define

a global section. However, this shift does not produce an admissible system of coordinate
of action-angle type, unless the functiofishave some special property, $&®position 8

Proposition 7. Assume that the monodromy vanishes. Then

(i) The cocycldzy,} vanishes if and only if the Poisson manifold P has k independent
global Casimirs
(i) The Chern class vanishes if and only if the fibration M — P is trivial.
(i) If the Chern class vanishes, then there exisfaan-uniqu¢ closed 2-form in P that,
restricted to the symplectic leaves, is the symplectic structure of the leaves. We call
any such 2-form a “Poisson 2-form”

Proof. Choose an admissible atlas which satisfies condit{éris.

(i) Triviality of {z,,} means,, = v, — v, for some vectors;, v,. Thus, the compo-
nents of the shifted actiong, + v, have identical transition functions and define
independent global Casimirs.

(iiy A principal bundle which has a global section is trivial.

(i) Let Fy, = fu. — fr. We show that the 2-forms defined within each coordinate domain
by

@), = & day, Adf, +dp; Adgy

are the local representatives of a closed, non-degenerate 2-faPmGiearly, the only
fact that needs to be proven is that the local fo@psire compatible, that i), = @,
on intersecting domains. Sinced*;, = 0, one has

C da, A doty, = C(der, + dFy ) A (day + dFyy,) = Cday, Aday,,

and hence the symplecticity condition

Z da; A day 4+ dpy A dg, + %C doy, A do,
= Eday, A day, +dpy, Adg, + 3C day Aday,

reduces ta, = @, since di;, = da,. O

In the Lagrangian and isotropic cases, a sufficient condition for the vanishing of the
cocycle{z,,} is the exactness of the symplectic 2-fowr{7,8]. This condition plays no
role in our case since in the non-isotropic case the symplectic form cannot be exact.
Results about the existence of “global action-angle coordinates” have been given in the
already quoted articles by Duistermaat, Dazord and Delzant and Parasyuk under the hy-
pothesis that the Chern class vanishes. These results generalize to the following proposition.

Proposition 8. Assume that the monodromy and the Chern class vanish. Consider an
admissible atlas which satisfies conditiqdsl). DenoteF,, = f, — f, and assume that
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there is a choice of the function$ such that
Cdf, =0, reA. (4.2)
Then, there exist global 1-forna;, global anglesy;, and a Poisson 2-formd such that

w:Eda/\da—i—%Cda/\da+d).

Proof. Definea = «; + f, in each chart domair, € A. SinceCdf, = 0, the local
expression of the symplectic forais

& da;, A day, +dp; Adgy, + 3C day Adw, = E da A da + @, + 3C da A da,

as claimed. O

Remark. Condition(4.2)is a compatibility requirement between the Poisson 2-form and
the choice of the angle coordinates. This condition obviously does not appear in the La-
grangian and isotropic cases. An equivalent condition (exactness of a certai®ioisn

used by Parasyuk in his study of the coisotropic case. Parasyuk also gives conditions which
ensure thab is exact: these conditions have some interest in the coisotropic case because, in
that case, they ensure that itis possible to elimifatéth a change of the angle coordinates.
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